A Protocol for Quantifying and Reporting the Performance of Anaerobic Digestion Systems for Livestock Producers

John H. Martin, Jr., Ph.D.

Hall Associates

Georgetown, DE

Support

• The Association of State Energy Research and Technology Transfer Institutions (ASERTTI)

• The U.S. Environmental Agency's AgSTAR Program

• The U.S. Department of Agriculture Rural Business Service

Purpose

To provide:

- 1. System developers with a standard approach to quantify performance and support claims that will receive general acceptance as credible, and
- 2. Third parties with the same approach for independent performance evaluations.

The Development Process

- Preparation of first draft for discussion,
- A workshop held in Chicago in late January to review and provide suggestions for revisions,
- Preparation of a final draft, and
- Solicitation of additional comments and suggestions.

Structure of the Protocol

- Prerequisites for performance evaluations
- Specification of required background information
- Requirements for characterizing performance with respect to:
 - Waste stabilization
 - Biogas production and utilization
 - Greenhouse gas emissions reductions
- Standards for economic analysis

Prerequisites for Performance Evaluations

- Full-scale systems located on commercial livestock operations
- A minimum of 12-months in duration
- Steady-state conditions after completion of startup (minimum requirements)
 - —Plug-flow & mixed digesters: 5 HRTs
 - —Covered lagoons: one year
 - —Attached film digesters: 3 months of warm weather operation

Required Background Information

- Name, location, and type of operation
- Type, age and number of animals
- Type of manure handling system
- Type of digester and design details
- Type of biogas utilization system with design details
- Source(s) of revenue from biogas production

Waste Stabilization

- Parameters:
 - Minimum: TS, TVS, COD, and pH
 - Optional: TVA, TKN, ON, NH₄-N, TP, indicator organisms, and pathogens
- Sample collection: representative composites of 24-hour flows
- Frequency of sample collection: monthly or semimonthly?
- Sample preservation and analytical methods

Biogas Production & Utilization

- Measuring production: total and utilized
- Biogas composition: CH₄, CO₂, H₂S, and NH₃
- Utilization:
 - Generating electricity: kWh generated, thermal conversion efficiency, and waste heat recovered and utilized or potentially available
 - Boiler fuel: Conventional fuel Btu replaced
- Reporting standards: The per animal-day problem with co-digestion

Greenhouse Gas Emissions

 Methane—Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2003 (USEPA, 2005) methodology

• Carbon Dioxide—2,249 lb CO₂ per MWh (Spath *et al.*, 1999)

Economic Analysis—Costs

- General approach: an independent enterprise
- Boundary conditions: exclusions and inclusions
- Annual capital cost: cannot exclude recovery with interest of an owner's investment
- Annual operating and maintenance costs: a better basis for estimation is needed

Economic Analysis—Revenue

• Valuing on-farm energy use: rate structure differences and demand charge impacts need to be included

 Revenue from by-products: what is valid and what is not

Next Steps

- Selecting a gatekeeper
- Establishing a review process
- Establishing and maintaining a distribution process (probably a website)
- Considering a certification program

Thank-you

Questions?